Extreme contractions on continuous vector-valued function spaces
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولNuclear Operators on Spaces of Continuous Vector-Valued Functions
Abstract Let Ω be a compact Hausdorff space, let E be a Banach space, and let C(Ω, E) stand for the Banach space of all E-valued continuous functions on Ω under supnorm. In this paper we study when nuclear operators on C(Ω, E) spaces can be completely characterized in terms of properties of their representing vector measures. We also show that if F is a Banach space and if T : C(Ω, E) → F is a ...
متن کامل0 Integral Operators on Spaces of Continuous Vector - valued functions
Let X be a compact Hausdorff space, let E be a Banach space, and let C(X,E) stand for the Banach space of E-valued continuous functions on X under the uniform norm. In this paper we characterize Integral operators (in the sense of Grothendieck) on C(X,E) spaces in term of their representing vector measures. This is then used to give some applications to Nuclear operators on C(X,E) spaces. AMS(M...
متن کاملCompactness in Vector-valued Banach Function Spaces
We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...
متن کاملAtomic characterizations of vector-valued function spaces
The rst part of this diploma thesis deals with the topic of nding equivalent norms and characterizations for vector-valued Besov and Triebel-Lizorkin spaces Bs p,q(E) and F s p,q(E). We will deduce general criteria by transferring and extending a theorem of Bui, Paluszy«ski and Taibleson from the scalar to the vector-valued case. By using special norms and characterizations we will derive neces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2006
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-06-08282-7